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On the exact solutions of fractional differentional 
equations using improved Riccati equations 

method 
S. K.Elagan1, 2 & M. Sayed2, 3 

 

Abstract—  The main objective of this paper is to use the fractional complex transformation to convert the nonlinear partial fractional differential equa-

tions to the nonlinear ordinary differential equations. We showed that   the fractional complex transformation is valid only in the case that fractional differ-

ential equations had general "wave" solutions. We used the improved Riccati equations method and obtained the exact solutions for nonlinear partial 

fractional differential equations. As an application we   got the exact solutions for the space-time fractional generalized Zakharov equations and space-

time fractional generalized Hirota–Satsuma coupled KdV equations. Also we gave a new   solutions for the improved Riccati equations. This method is 

efficient and powerful in solving wide classes of nonlinear evolution fractional order equations. These explicit exact solutions contained solitary wave 

solutions, periodic wave solutions and the combined formal solitary wave solutions. The method can also be applied to solve more nonlinear partial dif-

ferential equations. Finally, By comparison our new solutions by the other results we found that our solutions are new and not be found before. 

 
Index Terms—Improved Riccati equations method, Generalized Zakharov equations, Generalized Hirota-Satsuma Coupled KdV Equations, 
fraction complex transform.  

——————————      —————————— 

1 INTRODUCTION                                                                     
ractional differential equations are viewed as alternative 

models to nonlinear differential equations. Varieties of 

them play important roles and tools not only in mathematics 

but also in physics, dynamical systems, control systems and 

engineering to create the mathematical modeling of many 

physical phenomena. Furthermore, they employed in social 

science such as food supplement, climate and economics. Frac-

tional differential equations concerning the Riemann-Liouville 

fractional operators or Caputo derivative have been recom-

mended by many authors (see [1-5]). Transform is a significant 

technique to solve mathematical problems. Many useful trans-

forms for solving various problems were appeared in open 

literature such as wave transformation, Laplace transform, the 

Fourier transform, the Bücklund transformation, the integral 

transform, the local fractional integral transforms, Mellin 

transform, and the fractional complex transform, which was 

first proposed by He and Li [6-12], among which the fractional  

complex transform [6–12] is the simplest approach, it is to con-

vert the fractional differential equations into ordinary differen-

tial equations, making the solution procedure extremely sim-

ple. Similar to wave transformation which was to introduce in 

the form qt px ky lzx = + + +  , where , ,p q k  and l  are 

constants, for nonlinear wave equations, e. g., the KdV equa-

tion, the fractional complex transform also admits a complex 

variable ,x  instead of the above equation, defined as [6, 7] 

( ) ( ) ( ) ( )1 1 1 1
qt px ky lzα β γ δ

x
α β γ δ

= + + +
Γ + Γ + Γ + Γ +

, where , ,α β γ  

and δ are fractional orders. Such transformation is valid only 

for general “wave” solutions for fractional differential equa-

tions. However, not every fractional differential equation has a 

“wave” solution, hence its application is limited, and for this 

reason He and Elagan et al. [13] suggested a general transform 

which depend on the fractal index. Assume that 

( ): ,f R R x f x→ : denote a continous (but not necessarily 

F 
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differentiable) function, and let h  denote a constant discreti-

zation span, Jumarie’s defined the fractional derivative in the 

limit form 

( ) ( ) ( )
0

0
lim ,0 1
h

f
f x f

x
h

α
α

α
α

↓

∆ −  = < < ,                      (1) 

where 

( ) ( ) ( )
( ) ( )

( )
0

11
1 1

k

k
f x f x k h

k k
α α α

α
∞

=
∆

Γ +
= − + − ∑  Γ + Γ − +

  

 (2) 

This definition is close to the standard definition of the deriva-

tive (calculus for beginners) and as a direct result, the α − th 

derivative of a constant, 0 1,α< < is zero. An alternative, 

which is the strictly equivalent to Eq. (1) is the following ex-

pression as  

( ) ( )
( ) ( ) ( )

0

1 0 ,0 1
1

x
f dx x f f d

dx

α
α x x x α

α

−

= − − < < ∫  Γ −
 (3) 

and ( ) ( ) ( )( )( )
, 1, 1

nnf x f x n n n
α

α α
−

= ≤ ≤ + ≥ .              (4) 

Some properties of the fractional modified Riemann-Liouville 

derivative were summarized in, four useful formulas of them 

are  

( )
( )

1 , 0,
1xD x xγ γ αα γ γ
γ α

−Γ +
= >
Γ + −

                                           (5) 

( ) ( )( ) ( ) ( ) ( ) ( ),x x xD D Du x v x v x u x u x v xα α α= +           (6) 

( )( ) ( ) ( )' ,x u xD Df u x f u u xα α  =                                          (7) 

( )( ) ( )( )' .xx uD Df u x f u u
α

α α  =                                          (8) 

 which are direct consequences of the equality 

( ) ( ) ( )1d x t dx tα α=Γ + which holds for non-differentiable 

functions. In the above formulas (6)-(8), ( )u x is non-

differentiable function in (6) and (7) and differentiable in (8), 

( )v x is non-differentiable, and ( )f u is differentiable in (7) 

and non-differentiable in (8). In this article, based on the frac-

tion complex transform technique, we will devise effective 

way for solving fractional partial differentional equations. It 

will be shown that the use of the complex transform allows us 

to obtain new exact solutions from the known seed solutions 

for the time and space fractional generalized Zakharov equa-

tios and space-time fractional generalized Hirota–Satsuma 

coupled KdV equations.  

2 THE FRACTIONAL COMPLEX TRANSFORM 

  

Consider the following nonlinear partial fractional differential 
equation: 
 
 

, , , , ,
0

, , , ,

0 , , , 1

t x y z

t t t x x x x y y y

F
u D u D u D u D u

D D u D D u D D u D D u D D u

α β γ δ

α α α β β β β γ γ γ

α β γ δ

 
 =
 
 
< <

        (9) 

where u  is an unknown function, and F  is a polynomial of 

u and its partial fractional derivatives, in which the highest 

order derivatives and the nonlinear terms are involved. In the 

following, we give the main steps of the improved Riccati 

equations method. 

Step 1 He and Li [11] proposed a fractional complex transform 

to convert fractional differential equations into ordinary differ-

ential equations (ODE), so all analytical methods devoted to 

the advanced calculus can be easily applied to the fractional 

calculus. The traveling wave variable 

( ) ( ), , ,u x y z t u x= , 

( ) ( ) ( ) ( )1 1 1 1
Kx Ly Mz Ntα β γ δ

x
α β γ δ

= + +
Γ + Γ + Γ + Γ +

                         (10) 

where , ,K L M  and N  are non zero arbitrary constants, 
permits us to reduce Eq. (9) to an ODE of ( )u u x=  in the 
form                        

   ( ), , , ,... 0P u u u u′ ′′ ′′′ =                                    (11)                                                

Step 2 ([14]) Suppose the solution of Eq. (3) is expressed in the 

general form 

( ) ( ) ( ) ( )1

0 0

n ni j j
i i

i j
u a f b f gx x x x−

= =
= +∑ ∑ ,                    (12) 

Where ( )0, , , 1,2,..., ,i ja a b i j n= are all constants to be de-
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termined later. The new variables ( ) ( ),f gx x  satisfy the 

following improved Riccati equations: 

( ) ( ) ( ) ( ) ( ) ( )( )2, 1 ,f qf g g q g rfx x x x x x′ ′=− =− − −

   ( ) ( ) ( ) ( )22 21 2g rf r fx x ε x= − + +                                (13) 

where 1, 0,q rε =± ≠ are arbitrary constants. Now we obtain 

the solutions of (13). For ( ) ( )
1

f
ρ x

x
= , we obtain the simple 

differentional equation  

( ) ( )( )2 .q rρ x ρ x′′ = −  The solution is   

( ) 1 2 .q qc e c e rx xρ x −= + +  Therefore, 

( )
1 2

1 ,
q q

f
c e c e rx x

x
−

=
+ +

and 

 ( ) 1 2

1 2

q q

q q
c qe c qeg
c e c e r

x x

x x
x

−

−
−=

+ +
                                                  (14)   

Note that: Exp-function Method is a special case of this method 

when  ( ) ( )1expf qx x=  and ( ) ( )2exp .g qx x=                 

Step 3 The positive integer n can be d etermined  by consid-

ering the homogeneous balance between the highest order de-

rivatives and the nonlinear terms appearing in Eq. (11). ( n is 

usually a positive integer). If n  is a fraction or a negative in-

teger , we make the following transformation: (a) when dn
c

=  

is a fraction, we take ( ) ( )
d
cu x ν x= , then return to determine 

the balance  constant n  again; (b) when n  is a negative inte-

ger, we let ( ) ( )nu x ν x=  then return to determine the balance  

constant n  again. 

Step 4 Substituting Eq. (12) into Eq. (11), using Eq. (13), sepa-

rately yields a set of algebraic equations for 

( ) ( ) ( 1,2,..., 0,1).jif g i jx x = =  Setting the coefficients of 

( ) ( )jif gx x  to zero derives a set of over determined alge-

braic equations for 0, , ( , 1,2,..., )i ja a b i j n= , then solving 

this system using the Maple Package. 

Step 5 Substitute 0, , ( , 1,2,..., )i ja a b i j n= which are ob-

tained in step 4, to Eq. (10), Eq. (11), Eq. (12) and Eq. (14) re-

spectively. Then we obtain many exact solutions of Eq. (11). 

3 APPLICATIONS 
 

In this section, we present two examples to illustrate the ap-

plicability of our method to solve nonlinear fractional partial 

differentional equations. 

Example 1. We first consider the space-time fractional general-

ized Zakharov equations for the complex envelope ( , )x tψ of 

the high-frequency wave and the real low-frequency field 

( , )x tϕ  in the following form  

( )22( ) ( ) 2 ( ) ( ) 2 ( ) 0,a aiD x D x x x x xxt ψ ψ σ ψ ψ ψ ϕ+ − + =  

22 2 2( ) ( ) ( ) 0, 0 1a a aD x D x D x ax xt ϕ ϕ ψ− + = < ≤                 (15) 

where the cubic term in first equation of Eq. (15) describes the 

nonlinear-self interaction in the high frequency subsystem, 

such a term corresponds to a self-focusing effect in plasma 

physics. The coefficient σ  is a real constant that can be a posi-

tive or negative number. To demonstrate the effectiveness of 

our approach, we apply the method to construct the exact so-

lutions for the above equation. We can see that the fractional 

complex transform [6, 7] 

( ) ( ) ( ) ( ) ( ) ( )
, , , ,

1 1
Kx Ltx t x t

α α
ψ x ϕ x x

α α
=Ψ =Φ = +

Γ + Γ +        

  (16) 

Where K and L  are constants, permits us to reduce Eq. (7) 

into the following ODE: 

2 22 2 0,iL K σ′Ψ + − + ΨΦ=′′Ψ Ψ Ψ  

2 2 2 0, 0 1.L K K a− + =′′ ′′ ′′Φ Φ Ψ < ≤                               (17) 

By taking the pane we transformation in the form   

( ) ( ) ie xx xΨ =Η                                                          (18) 

where ( )xΗ  is a real function, we obtain the following ordi-

nary differentional equations 
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2 2 32 2 0,K L K σ− − − + Φ=′′Η Η Η Η Η  

22 0L K′ ′Η + Η =  

( )22 2 2 2 02 2 , 0 1.L K K K a− + =′′ ′′ ′′ ′Φ Φ ΗΗ + Η < ≤   (19) 

whereΗ ,Φ  satisfy Eq. (12) respectively. Considering the ho-

mogeneous balance between the highest order derivative and 

the nonlinear term in Eq. (19), we deduce that 

( ) ( ) ( )0 1 2 ,a a f a gx x xΗ = + +  

( ) ( ) ( ) ( ) ( ) ( )2 2
0 1 2 3 4 ,b b f b f b g b f gx x x x x xΦ = + + + +   (20) 

where ( ), 0,1,2; 0,1,...,4i ja b i j= = are all constants to be de-

termined later, and ( ) ( ),f gx x satisfy Eq. (12) respectively. 

Substituting (20) with (13) into (19), the left hand side of Eq. 

(19) is converted into a polynomial of

( ) ( )( )0,1,...,5; 0,1jif g i jx x = = , then setting each coeffi-

cients to zero, we get a set of over-determined algebraic system 

with respect to the unknown

, ( 0,1,2; 0,1,...,4), , .i ja b i j K L= =
 

Solving the system of 

over-determined algebraic equations using Maple Package, we 

obtain the following sets of solutions. 

Case 1 
2 2

2
0 1 1 3 4 2 2

1, 0, 0, 2 , ,
1 4

q Kr a a b b b L K b
K
εε

σ σ
=± = = = = = = =− =−

− +
 

( )( ) ( )
( )

2 2 2 2 2 2 2

2 02 2

1 4 1 4 1 4 8 2
, .

1 4 2 1 4

Kq K K K K q K q
a b

K K

σ σ σ σ σ σ

σ σ σ σ

− + − − + − + −
=± =

− + − +

     (21) 

Where , 0, 0q Kσ ≠ ≠ are all arbitrary constants, so accord-

ing to Eqs. (14), (18), (20), (21), we obtain solitary wave solu-

tions of Eq. (15) as follows 

( )
( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 22 2 221 1 1 1
1 11 2

2 22 2
1 1 1 1

1 2

2 21 4 1 4

21 4
,

Kx K t Kx K tq q Kx K ti

Kx K t Kx K tq q

Kq K K

K
x t x

c qe c qe e

c e c e

α α α α
α α

α α α α
α α

α α α α

α α α α

σ σ

σ σ
ψ

   
   − − − 
   Γ + Γ + Γ + Γ +  −    Γ + Γ +
   
   − − −
   Γ + Γ + Γ + Γ +   

− + −
±

− +

 
 

= 
  
 

 
 

− 
 
 
 + 




 


 

( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 22 2 221 1 1 1
1 11 2

2 22 2
1 1 1 1

1 2

2 21 4 1 4

21 4

Kx K t Kx K tq q Kx K ti

Kx K t Kx K tq q

Kq K K

K
x

c qe c qe e

c e c e

α α α α
α α

α α α α
α α

α α α α

α α α α

σ σ

σ σ
±

   
   − − −  
   Γ + Γ + Γ + Γ +  −     Γ + Γ + 
   
   − − −
   Γ + Γ + Γ + Γ +   

− + −

− +

 
 
 
  
 
 
 

− 
 
 
 + 
, and                     

( ) ( )
( )

( ) ( ) ( ) ( )

2 2 2 2 2

2

2

2 2

2 22 2 2
1 1 1 1

1 2

1 4 8 2
,

2 1 4

1
1 4 Kx K t Kx K tq q

K K q K q
x t

K

q K
K

c e c e

α α α α

α α α α

σ σ σ σ
ϕ

σ σ

σ σ    
   − − −
   Γ + Γ + Γ + Γ +   

− + − + −
=

− +

 
 
 
 − +
  + 



. 

Case 2 

( )
( )

2 2 2 2 2
2

0 1 3 0 2

2 2 8 4
1, 1, 0, 2 ,

4 1 4

K K q K q
r a a b L K b

K

σ σ σ σ
ε

σ σ

− + − + −
=− =± = = = =− =

− +

( )
( )( )

( )
2 22 2 2

4 4 4
2 4 1 22 2

1 4 1 42 2 82 , , ,
2 1 4 2 1 4

K Kq K b b K bb b b a Kq
K K

σ σσ σ
σ σ σ σ

− + − +± − + −=± =− =±
− + − +

 

where 4, 0, 0,q K bσ ≠ ≠ are all arbitrary constants, so ac-

cording to Eqs. (14), (18), (20), (21), we obtain solitary wave 

solutions of Eq. (15) as follows 
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( )
( )( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 2

2

2 22 2 221 1 1 1
1 11 2

2 22 2
1 1 1 1

1 2

1 4 1 4
,

2 1 4

1

Kx K t Kx K tq q Kx K ti

Kx K t Kx K tq q

K K
x t Kq x

K

c qe c qe e

c e c e

α α α α
α α

α α α α
α α

α α α α

α α α α

σ σ
ψ

σ σ

   
   − − − 
   Γ + Γ + Γ + Γ + −    Γ + Γ +

   
   − − −
   Γ + Γ + Γ + Γ +   

 − + − + = ± − + 
 

 
 

− 
 
 
 + ± 


 
 
 

, and                              

( ) ( )
( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2 2

2

2 2 2
4 4 4

2

2 22 2
1 1 1 1

1 2

4
2 22 2

1 1 1 1
1 2

2 2 8 4
,

4 1 4

2 2 8
2 1 4

1

1
Kx K t Kx K tq q

Kx K t Kx K tq q

K K q K q
x t

K

q K b b K b x
K

c e c e

b

c e c e

α α α α

α α α α

α α α α

α α α α

σ σ σ σ
ϕ

σ σ

σ σ
σ σ

±

   
   − − −
   Γ + Γ + Γ + Γ +   

 
 − − −
 Γ + Γ + Γ + Γ + 

− + − + −
=

− +

− + −
− +

 
 
 ±
 
  + ± 

+

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2 22 2
1 1 1 1

1 2

2 22 2
1 1 1 1

1 2
2 22 2

1 1 1
1 2

1
2

1
Kx K t Kx K tq q

Kx K t Kx K tq q

Kx K t Kx K tq q

x

c e c e

c qe c qe

c e c e

α α α α

α α α α

α α α α

α α α α

α α α α

α α α

 
 
 
 

   
   − − −
   Γ + Γ + Γ + Γ +   

   
   − − −
   Γ + Γ + Γ + Γ +   

 
 − − −
 Γ + Γ + Γ + Γ 

 
 
 
 
  ± 

+

+ ±

−

+
( )

2

1

.

1
α

 
 
 + 

 
 
 
 
 
  
  
  
  
    ±  

 

Case 3 

2 2
2

0 2 1 3 4 2 2
0, 0, 2 , ,

1 4
q Kr a a b b b L K b

K
ε

σ σ
= = = = = = =− =−

− +
 

( )( )2

2 2 2
1 02

241 4 1 1 1, ,
2 21 4

KKq K
a b K K q

K

σ σ ε

σ σ

− + −
=± =− −

− +
     (21) 

where , 0, 0q Kσ ≠ ≠ are all arbitrary constants, so according  

to Eqs. (14), (18), (20), (21), we obtain solitary wave solutions of 

Eq. (15) as follows 

( )
( )( )

( ) ( ) ( ) ( )

( ) ( )

2 2

2

22
1 1

2 22 2
1 1 1 1

1 2

1 4 4 1
,

1 4

1 ,
Kx K ti

Kx K t Kx K tq q

Kq K K
x t x

K

e

c e c e

α α

α α
α α α α

α α α α

σ σ ε
ψ

σ σ

ε

 
 −
 Γ + Γ + 

   
   − − −
   Γ + Γ + Γ + Γ +   

 − + − = ± − + 
 

 
 
 
 
  + ± 
 

and  

( ) ( )

( ) ( ) ( ) ( )

2 2
22

2

2

2 22 2
1 1 1 1

1 2

1, 1
2 1 4

1
Kx K t Kx K tq q

q Kx t K q x
K

c e c e

α α α α

α α α α

εϕ
σ σ

   
   − − −
   Γ + Γ + Γ + Γ +   

=− − −
− +

 
 
 
 
  + 

. 

Example 2. Let us apply our method to the space-time frac-

tional generalized Hirota–Satsuma coupled KdV equations  

( )3 0,1 3 3
2

a a a aD D D Dx x xt u u u u vw =− + −  

3 0,3a a aD D Dx xt v v u v =+ −  

3 0 , 0 1.3a a aD D D ax xt w w u w = < ≤+ −             (22) 

Equations (22) can be used to describe the interaction of two 

long waves with different dispersion relations. To demonstrate 

the effectiveness of our approach, we apply the method to con-

struct the exact solutions for the above equation. We can see 

that the fractional complex transform 

( ) ( ) ( ) ( ) ( ) ( ), , , , , ,u x t U v x t V w x t Wx x x= = =

( ) ( )1 1
Kx Ltα α

x
α α

= +
Γ + Γ +

   ,                             

Where K and L  are constants, permits us to reduce Eq. (14) 

into the following ODE: 

( )31 3 3 0,
2

LU K U KUU K VW ′′ ′′′ ′− + − =  

3 3 0,LV K V KUV′ ′′′ ′+ − =  
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3 3 0.LW K W KUW′ ′′′ ′+ − =                                       (23) 

Considering the homogeneous balance between the highest 

order derivative and the nonlinear term in Eq. (19), we deduce 

that 

( ) ( ) ( ) ( ) ( ) ( )2 2
0 1 2 3 4 ,U a a f a f a g a f gx x x x x x= + + + +  

( ) ( ) ( ) ( ) ( ) ( )2 2
0 1 2 3 4 ,V b b f b f b g b f gx x x x x x= + + + +  

( ) ( ) ( ) ( ) ( ) ( )2 2
0 1 2 3 4 ,W c c f c f c g c f gx x x x x x= + + + +     (24) 

where ( ), , 0,1,...,4i i ia b c i = are all constants to be determined 

later, and ( ) ( ),f gx x satisfy Eq. (12) respectively. Substituting 

(24) with (13) into (23), the left hand side of Eq. (23) is convert-

ed into a polynomial of ( ) ( ),jif gx x then setting each coeffi-

cients to zero, we get a set of over-determined algebraic system 

with respect to the unknown ( ), , 0,1,...,4 , ,i i ia b c i K L= . 

Solving the system of over-determined algebraic equations 

using Maple Package, we obtain the following sets of solu-

tions. 

Case 1: 
3 2

2 2 2 2 2 2 2
0 1 2, 2 , 2 2 ,

3
L K qa a K q r a K q r K q

K
ε+= =− = +

 

3 4 2 3 4 2 3 4 0,a a b b b c c c= = = = = = = =

 

( )2 2 3 2 2 3 2 2 3 2
1 0 0 0 0

0 2
1

4 4 4 2
,

3

Kq Lr K c q r c Lr K q c r c L K q c
b

c

ε ε+ + + + −
=

 

( )3 2 2 3 3 2
1

1 0 0 1 1
1

4 4 2
, , ,

3

K Lrc K q r L K K q
b c c c c

c

ε ε+ + −
= = =  

we obtain solitary wave solutions of Eq. (22) as follows 

( )
3 2

2 2, 2
3

L K qu x t K q r X
K

+= −  

( ) ( ) ( ) ( )
2 22 2

1 1 1 1
1 2

1
Kx K t Kx K tq q

c e c e r

α α α α

α α α α

   
   − − −
   Γ + Γ + Γ + Γ +   

 
 
 
 
  + + 

 

                    ( )2 2 2 2 22 2K q r K q Xε+ +                                                           

        

( ) ( ) ( ) ( )

2

2 22 2
1 1 1 1

1 2

1 ,
Kx K t Kx K tq q

c e c e r
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we obtain solitary wave solutions of Eq.(22) as follows 
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we obtain solitary wave solutions of Eq.(22) as follows 
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4. CONCLUSIONS 
 
The improved Riccati equation method is applied successfully 

for solving the system of nonlinear fractional differentional 

equations. The performance of this method is reliable and ef-

fective and gives more new solutions. This method has more 

advantages: it is direct and concise. Thus, we deduce that the 

proposed method can be extended to solve many systems of 

nonlinear fractional partial diffrentional equations. 
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